Rouleur back in the drink for race ’round Mercer Island

Rouleur back in Lake Washington with new beams.
Rouleur back in Lake Washington with new beams.

In preparation for competing in the Sound Rower’s “Sausage Pull” race tomorrow, Matt, Tim, and Scott assembled Rouleur yesterday at Sail Sandpoint and tested out the alignment of the new beams Matt constructed.  This was the first time since the 2016 Race to Alaska that the boat had been floated, and this race will be an interesting opportunity to get some speed data with the boat lightly loaded.

Matt will attempt the full course going counter-clockwise around Mercer Island.
Matt will attempt the full course going counter-clockwise around Mercer Island.


$1k prize for the 1st boat less than 20-feet to Race to Alaska

As the scant official prizes (10k$ for 1st; steak knives for 2nd) of the full Race to Alaska (R2AK) have now been claimed, it’s time to focus on the R2AK side bets: $1k for the 1st boat under 20′ to reach Ketchikan; and a Fisheries Supply gift certificate and loaner Seagull outboard for the 1st (most southerly, but still persisting) boat to get tapped out by the sweep boat.

The $1k side bet sponsor, Small Craft Advisor Magazine, published a great blog post summarizing the 16 competing boats, including photos.  Here is a list of all the teams with boats registered for the full race that are less than or equal to 20-feet length over all — from shortest (16′) to longest (20′):

Team First Last M/F Boat type Ye


# Reg team? 2016 Reg order Reg crew? # crew Qualifier start? Qualifier finish? Qualifier place Qualifier time (hours) Full race start? Full race finish? Place Time (days) Last point north Boat model Hull built for an R2AK? Cabin or shelter onboard? Boat cost Boat length LOA (m) Boat length (ft)
Shadowfax Dan Isaacson M Catamaran 2016 97 Y 44 y 1 y y 16 y Hobie 16 4.9 16.0
Can’t Anchor Us Tim Penhallow M Monohull 2016 92 Y 39 y 1 y y 52 y Swampscott dory w/cabin/etc mods n y $500 4.9 16.0
Coastal Express Heather Drugge F Monohull 2016 67 Y 14 y 2 y y 36 y Mirror dinghy n n? 4.9 16.0
Nordica Ryan Wegwick M Monohull 2016 93 Y 40 y 2 y y 43 y Nordica 16 n y 4.9 16.0
Bunny Whaler Nate Rooks M Monohull 2016 55 Y 2 y 2 y y 38 y Boston Whaler Harpoon w/rowing station n n? 5.2 17.0
Vantucky Justin Bay M Trimaran 2016 64 Y 11 y 2 y y 31 y Windrider (WR17) n n? $10,000 5.3 17.0
Excellent Adventure Bill Gifford M Monohull 2016 76 Y 23 y 2 y y 39 y Montgomery 17 n y 5.2 17.0
Sea Runner Thomas Nielsen M Monohull 2016 73 Y 20 y 1 y y 24 y Seascape 18 n n? 5.5 18.0
Gold Rush Mark Dussel M Trimaran 2016 75 Y 22 y 1 y y 50 y n Haro Strait Custom tri w/rotate-in amas – Trika 540 y 5.5 18.0
Angus Rowboats Colin Angus M Monohull 2016 56 Y 3 y 1 y y 17 y Row-cruiser modified w/ketch rig y y 5.7 18.8
Heart of Gold Karl Kruger M SUP 2016 74 Y 21 y 1 y y 41 y n False Narrows 19′ stand up paddle board ? n 5.8 19.0
Liteboat Mathieu Bonnier M Monohull 2016 61 Y 8 y 1 y y 40 y Liteboat rowboat modified to sail y n 6.0 19.6
Squamish Chuck Gardner M Monohull 2016 83 Y 30 y 3 y y 37 y Young 6M n y 6.0 19.7
Discovery Roger Mann M Trimaran 2016 54 Y 1 y 1 n DNS qualifier Frankentri “7 of 9” n y? 6.1 20.0
Take me to the Volcano Matt Johnson M Monohull 2016 63 Y 10 y 1 y n NDF qualifier Custom stabilized monohull w/pedal drive y n 6.1 20.0
Why Not John Manning M Monohull 2016 72 Y 19 y 2 y y 35 y 1960 Cal 20 n y 6.1 20.0

Two of these teams did not qualify for the full race.  Both would likely have dramatically altered this R2AK.

Truck-trailer problems prevented solo racer Roger Mann of Team Discovery from making it to Port Townsend with his custom trimaran.  Roger was first to finish solo in the 2015 R2AK, having persevered over the 1200 km course in a Hobie Islander.  This year he initially planned to paddle a folboat north without food (he planned to forage in the intertidal).  Later he prepared a trimaran he’d built for other adventure races, like the Everglades Challenge.

Matt Johnson of Team Take Me to the Volcano managed to get the only boat purpose-built for the 2016 R2AK finished in Seattle, pedal-sailed to Seattle, and started in the qualifier.  Unfortunately, a fatigued aluminum bracket caused one of his amas to separate from its crossbeam shortly after he’d run into the Strait of Juan de Fuca.  When he managed to pedal up wind and current round Point Wilson, Neptune dashed his hopes of continuing with a temporary lashing when both amas were ripped off by steep waves and a crossbeam was broken by the surf.  Undeterred, Matt returned to Seattle to get his rowboat, drove to Port McNeill and embarked on a row back to Seattle — in part to learn more about the race course for his future bids to win!

Of the remaining 14 teams that started the full R2AK from Victoria, three have withdrawn (as of July 1).  Karl Kruger of Team Heart of Gold human-powered his SUP sans sail not only across the Strait of Juan de Fuca to complete the qualifier, but then as far north as False Narrows in the first couple days of the full race — keeping up towards the front of the fleet.  Sadly, his SUP — more heavily loaded than in his previous experiences — caused him to paddle asymmetrically, resulting enough knee and hip pain that he was forced to retire.  John Manning and his crew in Team Why Not made it into the central Gulf Islands in their 1960 Cal 20 before retiring.  Mark Dussel of Team Gold Rush stopped after entering Haro Strait having decided his Trika 540 wasn’t up to the long haul north.

That leaves 11 team still in the running for the $1,000 prize.  As of noon on July 1, Team Angus Rowboats was in the lead and exiting Johnstone Strait having benefited from a rare southeasterly breeze.  At one point the tracker showed him making at least 6.0 knots.  In 2nd is 2-man team Vantucky, about mid-Johnstone Strait.  And in 3rd is Team Sea Runners, rounding Chatham Point after solo racer Thomas Nielsen blew through Seymour Narrows at 7.8 knots on the full ebb tide.  The rest of the teams are not far behind and many are poised to transit checkpoint one within the next tidal cycle.  Here’s a video I took of Colin approaching Seymour Narrows after dropping Matt at Port McNeill to row back through the fleet to Seattle —

Of the 5 solo teams, Colin and Thomas are in 1st and 2nd, Mathieu and Dan have been swapping between 3rd and 4th, while Tim is not far behind in 5th.  Here’s a screen recording of the R2AK tracker replaying their progress in the full race:

And here’s the situation as of 2:00 on Sat 7/2/16 — screengrab 2:00 7/1.  Matt is near the yellow star... screengrab 2:00 7/1. Matt is near the yellow star…

Colin’s at Peel Island near Port Hardy. Thomas is at Helmcken Island. Dan is at Turn Island. Mathieu is at Chatham Point. And Tim is positioned to run checkpoint #1 just north of Campbell River.

In the race of <20′ boats for the $1k from ‪#‎smallcraftadvisormagazine‬
1st: Team Angus Rowboats (Colin)
2nd: Team Vantucky holed up in Telegraph Cove
3rd: Team Sea Runners (Thomas)
4th/5th: Teams Bunny Whaler and Excellent Adventure on south shore of West Thurlow Island
6th-8th: Teams Squamish and Nordica rafted up with Shadowfax (Dan)
9th: Team Liteboat (Mathieu)
10th: Team Can’t Anchor Us (Tim)
11th: Coastal Express off Saratoga Beach south of Campbell River

Spectator’s guide to the 2016 Race to Alaska

The Race to Alaska (R2AK) is an unusual 1200 km “adventure” in which any type of boat — from stand-up paddle board to 70′ foiling trimaran this year! — aspires to be the first to reach Ketchikan, Alaska, under wind- or human-power.  The rules are very simple: no motors aboard; no support other than what’s available to everyone; and no adding or changing crew.  The full race starts in Victoria, B.C. a few days after a shorter race from Port Townsend, Washington, to Victoria which serves as a qualifier for the full race.

Below is a quick “guide” to key web sites and extra information about the R2AK 2016.  (It’s also available as a Google document and PDF for easy editing and printing…)


2016 Qualifier: starts on Thursday 6/23 at 6 a.m. in Port Townsend, WA.  Must reach Victoria Harbor by noon on Friday 6/24.

2016 Full race: starts on Sunday 6/26 at noon in Victoria, B.C.  Must transit Seymour Narrows and Bella Bella en route to Ketchikan, AK.

Key web pages:

See handy links at the top of this web site, too!

Official Race web site —

Facebook page —

Track the progress of your favorite teams during the race (location updates every 15 minutes) —


Don’t miss Jake’s hilarious descriptions of race teams!

And his accounts of many of the 2015 teams and adventures:

Compare the promo videos and watch the Larry Ellison throwdown —


Other web sites of interest:

Small Craft Advisor forum on the R2AK


Google spreadsheet with team data from 2015-2016 that underlies tables in the talk


Scott’s San Juan Sailing Club presentation about R2AK 2015 (web-based slide presentation) —

— with links to more slide shows, videos, web sites, and 2016 racers.


Rouleur’s canting dagger boards: balancing lift & drag in small R2AK boats

An interesting aspect of helping Matt build his Race to Alaska boat is learning from him, the boat designer Rick Willoughby, and other contributors how important aero- and hydrodynamics are to creating an efficient boat.  When you can only provide ~250 watts of propulsion power (or 500 in Matt’s case), rather than the normal 3600 watts you get from a 5 hp outboard, you need to minimize drag in order to attain admirable boat speeds.

Matt’s boat is version 16 of a pedal boat designed by Rick.  This V16 R2AK is modified for the Race to Alaska in many ways, but one key one is the canting daggerboards.  These foils are designed to be elevated above the waterline so that Matt can pedal without any water drag from them, and then  lowered during sailing to to provide lateral resistance and lift that helps keep the boat from heeling.

When lowered to the maximum angle of about 55 degrees below horizontal, the leeward daggerboard will help with upwind performance.   On a reach it could be raised to provide more lift, while on a run it can again be pulled up clear of the water.

Here are some photos of the dagger boards — both during construction and initial sea trials.

We ended up deciding to shorten the struts from about 63 cm to 58.5 cm LOA.  This allows the struts to come up above the water line (and hopefully many of the smaller waves) and be lowered down to near 55 degrees below horizontal.

Here are the struts after being shortened experimentally to about 60 and 58.3 cm LOA…



It was clear during testing in the lake that the bare aluminum struts were creating a LOT of drag.  Rick explained that fairing them (with a symmetrical foil shape) would reduce the drag by about a factor of 20.  Sailing with them immersed was equivalent to pulling a second Rouleur hull behind us!

Here are a few more photos of the fairing of a second set of struts (made with slightly thicker walled aluminum tubing, too, I think).  This set was faired with cedar, though we may fair the original tube with foam insulation to have a backup (lighter duty) second pair.

The astute reader will notice that I drilled the holes 90 degrees off in the ends of the struts!  This was remedied by re-squeezing the ends (I did this in the vice already without cracking any epoxy, thankfully) and re-drilling (much easier to line up the holes when you’ve got the faired foil shape behind the bit in the drill press!).  Any strength lost from the initial errant holes I hope to regain by injecting silica-epoxy plugs 2-3 cm into the tube ends.

I’m excited to see what these faired struts do for Rouleur’s speed.  So far she’s not quite attained the sailing speeds that Rick expects from his modeling…

R2AK recipe: Can-do couscous


With two weeks to go before the start of the 2016 Race to Alaska (R2AK), I thought I’d share my favorite meal from my 14 day experience in the 2015 Race: “Can-do couscous.”  This <10-minute meal delivers a powerful combination of carbohydrates, fats, and flavor that will warm your core and keep you energized (9.2 MJ, or 2,200 Calories).  Mixed with 250 ml water it’s reminiscent of a puttanesca pasta; with 500 ml it’s a Mediterranean minestrone.

R2AK Recipe: Can-do couscous

Scott Veirs, Team Searunners, 2015

Total energy: 2209 Cal or 9.2 MJ

Total mass (dry): 484 g

Energy density (aka specific energy): 19.0 MJ/kg (= 19.0 kJ/g)


  • 250 ml couscous — 640 Cal
  • 100 ml olive oil — 800 Cal
  • 100 ml powdered Parmesan cheese — 133 Cal
  • 50 ml kalamata olives — 180 Cal
  • 50 ml sun-dried tomatoes (in oil) — 366 Cal
  • 5 ml Better than Boullion (vegetarian flavor) — 10 Cal


  1. Mix all ingredients except couscous
  2. Add mixture to couscous in a Ziploc bagIMG_3227
  3. Store in cool place (we used our bilge) until really hungry
  4. Boil 500 ml freshwater (took ~1.5 minutes in our Jetboil)
  5. Squeeze, pour, spoon mixture from bag to 1-liter eating container
  6. Add 250-500 ml of boiled water to eating container
  7. Stir well (to ensure boullion dissolves) and cover for 5 minutes
  8. Consume with a can-do attitude (it’s a big, filling meal for 1; a hearty snack for two)

I ate this 3 or 4 times in 14 days of dinners and never got tired of it.  Since Thomas and I based all our meals on a 500 ml Jetboil volume, this was the one way I could think of to get the satisfaction of one of my favorite foods — pasta — with neither the risk of boiling water on a rolling for 10-15 minutes nor the waste of precious pasta water.  The olives and tomatoes break up the otherwise monolithic texture of the couscous, the savory-salty boullion base is delicious, and the Parmesan holds everything together and provides the novelty of occasional melted cheese strings.  This version is vegetarian, but a carnivore could add anchovies…

We were aiming for 5,000-7,000 Calories per day, so this meal was a solid third of my daily calories.  It sometimes seemed like a daunting amount, but only once did I save ~1/4 of it for a snack later.  (It’s totally fine, cold, too.  Pasta salad!)  Overall, this dinner weighs in at about 500 grams and delivers 9.2 megajoules of Race fuel.  That works out to about 19.0 kJ/g which is well above carbohydrates (17 kJ/g) due to the fats in the olive oil and Parmesan cheese.  (Olive oil has a specific energy of 37 kJ/g!)

For reference, milk chocolate has a specific energy of 22.85 kJ/g…  So, I recommend the Ritter’s milk chocolate with hazelnuts for your R2AK dessert!

Anyone else care to share their favorite recipe?  Add it in the comments.


Human-powered boat speeds at the start of the 2015 Race to Alaska

While most of the 2015 Race to Alaska (R2AK) was rather breezy, the very beginning of stage 2 (from Victoria to Ketchikan) offers an opportunity to compare the speeds of the diverse boat types in the fleet.  Not only is sailing not allowed in the inner harbor of Victoria, but there was virtually no wind during the first couple hours of the Race.  As the ebb tide weakened and the bulk of the fleet made the big left turn from the Strait of Juan de Fuca into Haro Strait, a light southerly filled in and the sailboat race began (see plot of wind speed at Kelp Reefs below).

Not until 2 p.m., a couple hours into the 2015 R2AK, did the southerly begin to flow up Haro Strait.

This near-calm period affords an opportunity to compare the speeds of the many different types of human-powered propulsion that were utilized by the 2015 fleet.  Boats with a wide range of designs and displacements used oars while others tried 1- or 2-bladed paddles.  A hand full of technological innovators used pedal-powered propellers or adaptations of the Hobie Mirage drive.

The fleet under human power along the shoreline south of Victoria.
The fleet under human power along the shoreline south of Victoria.  (Photo from

While a more quantitative assessment is warranted (maybe with GPS Action Replay?), with the excitement of the 2016 upon us, I tried a simpler approach.  Assume that everyone started at about the same time (high noon on Sunday June 7, 2015), that the whole fleet cleared Point Gonzales before any meaningful amount of wind set in, and that everyone experienced about the same set from the ebb. Here’s the current situation at Race Rocks for that day:

2015-06-07 Sun  5:14 AM PDT   Sunrise
2015-06-07 Sun  5:38 AM PDT    0.6 knots  Max Flood
2015-06-07 Sun  6:47 AM PDT   -0.0 knots  Slack, Ebb Begins
2015-06-07 Sun 11:12 AM PDT   -5.3 knots  Max Ebb
2015-06-07 Sun  3:05 PM PDT    0.0 knots  Slack, Flood Begins
2015-06-07 Sun  6:09 PM PDT    5.3 knots  Max Flood
2015-06-07 Sun  9:11 PM PDT   Sunset

With those assumptions in place (and with the caveat that any ebb current would reduce the apparent speed of the R2AK boats as measured by their SPOT transceivers), I next measured the point-to-point distance from the Empress marina in the Inner Harbor of Victoria to Point Gonzales (just NE of Trial Islands).  It’s ~10.5 km.  I then used the R2AK tracker re-play function to estimate the time that each boat passed Point Gonzales.  (This is a little tricky due to the 15 minute location interval, but if we assume constant speed during those 15 minutes we can approximate the time at which a boat passed the Point to within a minute or two.)

Here are the results (also available within this Google spreadsheet of Inter-annual R2AK Statistics) —

Team Human power (primary) Victoria – Gonzales Pt. (10.5 km) speed (kts) Victoria – Gonzales Pt. (10.5 km) speed (kph)
Broderna oars n/a  n/a
Barefoot Wooden Boats oars n/a  n/a
Soggy Beavers paddle 5.00 9.26
Hexagram 59 pedal 4.00 7.41
Sea Runners pedal 3.70 6.85
Turn Point Design pedal 3.66 6.77
Discovery mirage 3.58 6.63
Mike’s Kayak paddle (2 blade) 3.40 6.30
Pure & Wild pedal 3.27 6.06
Boatyard Boys oars 3.15 5.83
Mau pedal 3.09 5.73
John paddle (1 blade) 3.04 5.63
Elsie Piddock oars 2.93 5.43
Puffin pedal 2.91 5.38
MOB Mentality oars 2.88 5.34
Kohara pedal 2.86 5.29
Un-cruise mirage 2.79 5.16
Blackfish oars 2.77 5.12
Grin oars 2.77 5.12
Por Favor oars 2.77 5.12
Golden Oldies oars 2.68 4.96
Coastal Express oars 2.52 4.67
Excellent Adventure oars 2.50 4.63
Real Thing pedal 2.38 4.41
Free Burd oars 2.36 4.38
Y Triamoto oars 2.36 4.38
Super Friends oars 2.36 4.38
Seawolf pedal 2.00 3.71

The range of speeds (5.0-2.0 knots, or 9.3-3.7 kph) is not that big — though it feels substantial when you’re getting passed by someone on the course, or trying to catch up to a boat that’s “just ahead!”  I certainly recall being appalled at how fast the Soggy Beavers (44′ OC-6, mean speed 5.0 knots) overtook our 17′ catamaran (pedal+paddle power, mean speed 3.7 knots) in the first few minutes of the race (see below)!  [There’s no data for 2 boats that had SPOT trackers that weren’t working during the start.]

Six-minutes after the bell, the Soggy Beavers pass Team Sea Runners on route to set the Point Gonzales speed record:
Six-minutes after the bell, the Soggy Beavers pass Team Sea Runners on route to set the Point Gonzales speed record: 9.26 kph.  They passed Point Gonzales just one hour and 8 minutes into the 2015 Race to Alaska.

The fastest boat (Team Soggy Beavers) was a long, narrow, lightly-loaded hull propelled by Canadians using the most tried-and-true technology on the Pacific Northwest coast: the canoe paddle.  The next three fastest boats used pedal drives, assisted in some cases by a paddle: Hexagram 59 was relentless in their use of a supplementary SUP paddle (always on the port side!); Sea Runners occasionally took vigorous strokes with a canoe paddle.  Turn Point Design had a carbon fiber cat driven by the largest prop among the pedal-powered boats.

One interesting pattern is that the 7 top speeds were obtained with less traditional methods (not rowing).  After them, came the three fastest boats that were rowed: the Boatyard Boys (small boat, strong rowers; coincidentally almost matched by Team Mau with an athwartship pedal system), Elsie Piddock (the winners of the windy 2015 R2AK), and MOB Mentality.  This pattern hints that there are still speed gains to be made by both rowers and technological innovators.  This year Colin Angus and Mathieu Bonnier will bring a LOT of rowing experience to the race.

And Matt Johnson will bring some serious pedal power.  His interest in pedal-powered boats is partly fueled by an interest in breaking the World record for 24-hour distance in a human powered boat.  This Google spreadsheet of human-powered boat speed records and measurements shows how high the bar has been set over the years — primarily by pedal boats and kayakers.    The speeds maintained over 24-hours have been creeping up over the decades.  Kayaks have gone from 8.04 kph in 1988 to 10.15 kph in 2013, while pedal-powered boats have increased dramatically from 3.76 kph in 2000 to 10.22 in 2008.

Overall the 2015 R2AK boat speeds over those first 10.5 km bracket the speeds maintained over long distances by rowers and kayakers (3-5 kph; e.g. Colin and Julie rowing across the Atlantic averaged 3.9 kph).  But the upper R2AK speeds aren’t far from the World record paces of pedal-boater Greg Kolodziejzyk (10.5 kph) or Bellingham-based kayaker Brandon Nelson (10.22 kph).  The top sprinting speeds achieved historically indicate an upper edge of what current technology may soon deliver over a long course like the R2AK (ignoring factors that limit human endurance): 17.6 kph for Gordie Nash in a pedal boat; 20.55 kph (11 knots!) for Olympic kayak men’s K4 sprint.

Who do you think will beat the “Point Gonzales record” (of 5 knots) this year?

For the competition to be “fair” from year to year, the current situation should be about the same.  It looks like Jake did a good job of leveling the playing field:

2016-06-26 Sun  5:14 AM PDT   Sunrise
2016-06-26 Sun  5:26 AM PDT    0.0 knots  Slack, Flood Begins
2016-06-26 Sun  6:47 AM PDT    0.9 knots  Max Flood
2016-06-26 Sun  8:24 AM PDT   -0.0 knots  Slack, Ebb Begins
2016-06-26 Sun 12:18 PM PDT   -4.2 knots  Max Ebb
2016-06-26 Sun  3:57 PM PDT    0.0 knots  Slack, Flood Begins
2016-06-26 Sun  6:55 PM PDT    4.5 knots  Max Flood
2016-06-26 Sun  9:19 PM PDT   Sunset

The slack will come about an hour later this year, but the max ebb is about a knot less than last year.  May the best technology and most powerful racer win!


Solar electric systems for small boats in the R2AK

The Race to Alaska (R2AK) is an un-supported challenge in which reliable communication and navigation is important, but energy supplies are often limited.  Many of the smaller boats want to be light to make sailing or human propulsion faster, so taking tons of batteries isn’t an option.  Solar charging systems can be limited by inclement weather.  And getting wet is pretty much guaranteed on a small (<20′) boat.

Electrical system for cruising 21′ cat and Team Puffin (R2AK 2015, ~9.0 kg):

Here’s the system that Team Puffin used in the 2015 R2AK.  This set-up was derived from systems that were used aboard the same Wharram Tiki 21 sailboat (“Milagra”) during summertime cruises over the last 5 years.

Here’s some pictures of it in action during the cruising era:

Typical cruising loads as well as the loads required by Team Puffin were served through USB chargers that fit the cigarette lighter jacks.  The main power demands were for:

  • iPhones (with Navionics, MarineTraffic, and other apps)
  • VHF radio (plus a back-up)
  • iPad (only aboard with Team Puffin, and not used much as iPhones sufficed)

Electrical system for Team Take Me to the Volcano (R2AK 2016; ~7.8 kg)

The Tiki 21’s electrical box is being modified for use by Team Take Me to the Volcano in this year’s (2016) Race.  Matt’s main charging needs are:

  • VHF (plus a back-up)
  • Phone
  • Lithium-ion battery pack (a 20,000 mAH one costs ~25$ now! that’s 20 AH, so seems cost effective compared to larger motorcycle-sized lithiums…)


Most other items will be powered by disposable (mostly lithium AA) batteries:

  • GPS
  • Flash light / anchor light
  • Head lamp
  • Running lights
  • R2AK SPOT (lithium only)

Here’s a spreadsheet that compares the mass, cost, and other factors for the Tiki 21 system and the modified system for the V16 R2AK.

Based on these comparisons, here are the main modifications and improvements we are making:

  1. Lighten up the whole system by switching from lead-acid to a lithium battery, and possibly by using a less rugged waterproof case (new Pelican Air 1485 of sufficient outer dimensions is 2.1 kg, saving about 800 grams over current case)
  2. Add energy storage by using “bricks” now mass produced for recharging phones/etc that are charged via the USB ports
  3. Solder, stabilize, and marine-ize all wiring, terminals, and components
How will you power your R2AK? Here’s the system undergoing transformation from Team Puffin (2015) to Team Take Me to the Volcano (2016).

Here’s the final result.  This may still be too heavy for Matt to use in the R2AK, but it is an incremental improvement in the cruising system I’ll use aboard the Hitia 17 or Tiki 21.

The new and improved electronics box.

The main changes were:

  1. Lowered total mass by about 2.0 kg overall.
    1. The big savings of 2.1 kg was from switching from Pb-acid to lithium iron phosphate battery.  We take a little hit in capacity (going down from 12 to 9 Ahr), but presumably that can be supplemented by adding a USB lithium battery brick.
    2. Considered a Pelican Air, but the mass savings for the smallest that would fit the 10W panel was only 500 g.
    3. The Bioenno charge controller added ~110 grams over the BatteryTender one (but I hope it handles load vs battery maintenance more intelligently…
    4. I re-sealed the holes in the case with Tap Plastic’s recommended 2-part glue for polyethene (adding some glue mass, but simplifying the seal of a big historic hole in a way that reduced mass a bit).
  2. Testing extra capacity with Matt’s Aukey 20 Ahr brick, but may end up using a smaller one that I own…
  3. All wires are now terminated, soldered, and heat shrink tubed.  Battery, controller, etc are also much more secure — either lashed, screwed, or velcro-ed down.  I was surprised to see how much electronic complexity is inside the charging base for the VHF.  In a feeble effort to protect it, I added some shoe-goo to the perimeter of the base cover which is otherwise just held on by a single central (tiny) screw.  An added benefit of glue-screwing the base to the wooden board (which I moved and glued to the handle/edge) is that now the VHF can be used (for listening to weather, or even transmitting while plugged into the charger…
It’s not a simple connection of the 12V wires to the radio!

LiFePO4 battery details

I ran into two tricky bits in implementing the lithium battery upgrade.

First, not all lithium iron phosphate batteries are the same.  Some are aimed at maximizing lithium cranking amps (LCA) while others can tolerate deep cycling.  While offered an attractive lithium option (12V, 120 LCA, 0.5 kg, $100), they emailed to say that it really wasn’t appropriate for deep cycle use in a marine setting.  After searching around (and finding this very interesting Canadian electrical engineer who is making a solar charge controller for lithium PO4 battery banks), I ended up at BioEnno Power looking at their 12V series of LiFePO4 batteries about which they say:

These are Deep-Cycle Batteries for extended continuous use, not to be confused with High-Rate Batteries which are for starter applications only and not for extended continuous use.

I ended up choosing the BioEnno Power 12V, 9Ah Pb-acid equivalent LiFePO4 deep cycle battery.

Though it is only ~1/2 the mass of the current Pb-acid battery in our system and still costs ~4x as much, I’m excited for the weight savings and to try this new technology.  I was also motivated to go with them since they sell an AC charger ($22) and a 12V/10A solar controller ($40) that specify having a charging algorithm that is appropriate for LiFeSO4 batteries, though it’s not clear to me whether or not they use a 5-stage LiFePO4 charging algorithm that Battery Tender recommends.

Second, the weight savings seemed to vary a lot depending on the LiFePO4 battery manufacturer, or possibly the intended application: deep cycling vs high-rate.  For example the Battery Tender 12V/120LCA battery (which they bill as equivalent to a 7-9Ah Pb-acid battery) weighs 0.5 kg which is is ~1/7 the mass of the current Pb-acid battery’s 3.3 kg.  In contrast, the BioEnno 12V/9Ah battery has a mass of 1.18 kg — about 1/3 of the Pb-acid mass.  Even the 240LCA () Battery Tender option weighs only 0.8 kg (1/6th Pb-acid mass).  What could account for this factor of ~2 difference in LiFePO4 battery mass?  (Bolted vs welded connections between cells?)



First salt water launch and initial speed data

IMG_0325On Sunday (5/22/2016), Team Take Me to the Volcano launched the “V16 R2AK” at the Secret Beach in Ballard, Seattle.  Around 6pm Matt, Mark Dix (Team The Windsurfer, Stage 1 R2AK, 2015), and Scott finished bolting iakos to amas, having leveled the main hull and amas before drilling the final bolt holes in the inboard end of the iakos.  We loaded up the main hull on Mark’s car and the amas on Scott’s and headed (carefully, remembering Colin’s tragedy) down the curvy road to Puget Sound.

At the beach Chris and Mik met us and helped unload onto the sandy beach.  High tide was approaching, so once we re-connected the amas and main hull with some help from Sam (of Team Puffin, R2AK 2015), set up the seat and other gear, it was easy for Matt to pull the boat into the sea.

With Matt aboard and a fair amount of gear, the step out from the lower to upper hull was 95-105 cm above sea level.  We tried loading 50 pounds of weight behind the seat, but thought that pushed the rudder assembly a little too deep.  When Matt was pushing hard the steering arms on the rudder were mostly submerged.  With the 50 pounds removed, the rudder arms were clear of the water (except when waves passed over it).  Overall, it looks like it will be helpful to get some more weight up forward — which of course will happen when the sailing rig gets stepped (just forward of the forward beam).

With the initial trim set and some confidence that it wasn’t leaking, Matt brought the boat back to shore for a proper Christening.  Lisa and Ciana had arrived with champagne and proceeded to help Matt name the boat “Rouleur.”  The beautiful Douglas fir bows were glowing in the setting sunlight, glistening with the recent heavy rains, and foaming with celebratory champagne as we all hailed the arrival of another fine boat on our ocean planet!

Matt then took Rouleur out for another longer spin.  A few minutes after he had disappeared “upstream” toward the Ballard locks, it was an awesome sight to see him blaze bast a couple cruising kayaks.  It seemed he was suddenly off towards Ketchikan at high speed!  But he eased off on the power at the last-minute and circled back to us.  Near the beach a set-screw gave in to the tremendous torques Matt was pushing through the right angle drive, so our sea trials of the pedal propulsion system had to cease.  It was easy to return to the beach with gentle pedaling, and earlier it was clear that the back-up human power method of a SUP paddle was also effective.

Matt takes a seat he’ll sit in a LOT.
The view seaward from the hot seat.


Map of the 2nd test run (w/50 pound weights).
Speed vs distance plot for 2nd circuit.  Cruising speed was 8-10 kph.

The initial speed data suggest that in flat water and no wind, Matt should be able to keep this boat in the 5-10 kph range pretty easily.  Remember for the ~1200 km Race to Alaska, 10 kph mean VMG will get you to Ketchikan in about 5 days; 5 kph will get you there in 10!  Averaging 15 kph 24/7 will beat Elsie Piddock’s record handily; you’ll be there in 3.3 days!

For comparison, when Greg set the world record for distance in a human-powered boat over 24 hours, he averaged 10.22 kph.  Here’s a spreadsheet of long(-ish) distance speed means for human-powered boats.  While sprinting kayaks can hit 17-20 kph, a huge question in the 2016 R2AK — especially if there are extended windless periods — is whether Matt’s cycling prowess and the Rouleur’s pedal-propulsion system can sustain ~10 kph over significant stretches of the BC coast.

Longer 3rd run (50 pound weights removed).
Speed vs distance for 3rd, longer circuit. Top speed was about 13 kph, average about 10 kph!

My favorite part of the evening was seeing Rick Willoughby‘s design assembled and afloat.  The curved iakos seemed to connect in a near-circular arc.  Rouleur seemed perched on the water’s surface, wings outstretched — both embracing the sea and poised ready to streak across it.

IMG_0310 IMG_0318

Building hulls through the winter

Over the winter of 2015-2016, I stopped by Matt’s house in Ballard a few times to help him build the hulls for his V16 R2AK.  It was a pleasure to work in his recently re-organized shop, in part because I always get good ideas about how to improve the work space in my garage and often get to try using nifty tools — some of which I’ve never seen before!

December 8, 2015

After checking out the table and chop saw work bench that Matt built, we epoxy coated some long lengths of door skin and then started laying out the bulkhead positions for the amas.  I love that Rick’s plans are all-metric!


We used hot glue to tack the foam bulkheads in place.  It seemed to work pretty well, though you had to work fast and together to insert the bulkheads before the glue cooled too much.


The amas have a nice knife-like profile.  Suddenly straight door skin panels start to look like they might move through the water pretty fast…

January 3, 2016

After the holidays we dry-fitted the base of the main hull.  It was tricky to get the longer door skin panels to hold a smooth curve, especially between the bulkheads and near the re-curved part of the bow.


After consulting with Rick, Matt decided to add a few stringers, so we worked together to rip them on his table saw.  I also did some sanding of some a previous epoxy coat that had beaded up in an interesting pattern of stippled patches.  It was nice to have the shop vac set up to filter out the dust.


February 11, 2016

Now the main hull is taking form enough that one can imagine pedaling and sailing within it!


We weighed it and Matt portage-posed with it before settling into the main job at hand: gluing decks on the amas.